71 research outputs found

    Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview

    Get PDF
    Microbiology (2009), 155, 3476–3490The presence and deteriorating action of micro-organisms on monuments and stone works of art have received considerable attention in the last few years. Knowledge of the microbial populations living on stone materials is the starting point for successful conservation treatment and control. This paper reviews the literature on cyanobacteria and chlorophyta that cause deterioration of stone cultural heritage (outdoor monuments and stone works of art) in European countries of the Mediterranean Basin. Some 45 case studies from 32 scientific papers published between 1976 and 2009 were analysed. Six lithotypes were considered: marble, limestone, travertine, dolomite,sandstone and granite. A wide range of stone monuments in the Mediterranean Basin support considerable colonization of cyanobacteria and chlorophyta, showing notable biodiversity. About 172 taxa have been described by different authors, including 37 genera of cyanobacteria and 48 genera of chlorophyta. The most widespread and commonly reported taxa on the stone cultural heritage in the Mediterranean Basin are, among cyanobacteria, Gloeocapsa, Phormidium and Chroococcus and, among chlorophyta, Chlorella, Stichococcus and Chlorococcum. The results suggest that cyanobacteria and chlorophyta colonize a wide variety of substrata and that this is related primarily to the physical characteristics of the stone surface, microclimate and environmental conditions and secondarily to the lithotype

    Growth of phototrophic biofilms from limestone monuments under laboratory conditions

    Get PDF
    International Biodeterioration & Biodegradation,xxx (2009) 1–8In the current study, five phototrophic biofilms from different Southern Europe limestone monuments were characterised by molecular techniques and cultivated under laboratory conditions. Phototrophic biofilms were collected from Orologio Tower in Martano (Italy), Santa Clara-a-Velha Monastery and Ajuda National Palace, both in Portugal, and Seville and Granada Cathedrals from Spain. The biofilms were grown under laboratory conditions and periodically sampled in order to monitor their evolution over a three-month period. Prokaryotic communities from natural samples and cultivated biofilms were monitored using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments in conjunction with clone sequencing and phylogenetic analysis. DNA-based molecular analysis of 16S rRNA gene fragments from the natural green biofilms revealed complex and different communities composition with respect to phototrophic microorganisms. The biofilms from Orologio Tower (Martano,Italy) and Santa Clara-a-Velha Monastery (Coimbra, Portugal) were dominated by the microalga Chlorella. The cyanobacterium Chroococcidiopsis was the dominating genus from Ajuda National Palace biofilm(Lisbon, Portugal). The biofilms from Seville and Granada Cathedrals (Spain) were both dominated by the cyanobacterium Pleurocapsa. The DGGE analysis of the cultivated biofilms showed that the communities developed differently in terms of species establishment and community composition during the threemonth incubation period. The biofilm culture from Coimbra (Portugal) showed a remarkable stability of the microbial components of the natural community in laboratory conditions. With this work,a multiple-species community assemblage was obtained for further stone colonisation experiments

    The influence of inherent properties of building limestones on their bioreceptivity to phototrophic microorganisms

    Get PDF
    Annals of Microbiology, 59 (4) 705-713 (2009)The influence of open porosity, water absorption capillarity, water vapour permeability, surface roughness, stone pH and chemical composition on stone bioreceptivity to phototrophic microorganisms was assessed by means of a thorough stone characterisation with subsequent artificially inoculation of limestone samples with a multi-species phototrophic culture and placing them inside a growth chamber for 90 days. A principal component analysis and an analysis of variance(ANOVA) were carried out in order to evaluate the direct relationships between stone bioreceptivity and petrophysical properties. From the principal component analysis, two main components were obtained and assigned a petrophysical/photosynthetic biomass meaning. Stone bioreceptivity, quantified by the amount of chlorophyll a and intensity of chlorophyll a fluorescence present on the stone samples after 90 days-incubation, was included in both principal components. The first component was linked to the amount of chlorophyll a and was highly and linearly associated to capillarity and roughness,and less associated with open porosity and water vapour permeability. The second component, linked to the intensity of chlorophyll a fluorescence measured on the stone surfaces, was not linearly associated with the petrophysycal properties,showing the fallibility of this in vivo chlorophyll quantification technique on the estimation of photosynthetic biomass growing on stone materials, particularly when endolithic growth occurs

    Biological Control of Phototrophic Biofilms in a Show Cave: The Case of Nerja Cave

    Get PDF
    13 páginas.- 5 figuras.- 2 tablas.- 39 referenciasCyanobacteria and microalgae are usually found in speleothems, rocks and walls of show caves exposed to artificial lighting. These microorganisms develop as biofilms coating the mineral surfaces and producing aesthetic, physical and chemical deterioration. A wide number of physical, chemical and environmental-friendly methods have been used for controlling the biofilms with different results. Natural biological control has been suggested by some authors as a theoretical approach but without direct evidence or application. Here we report the finding of a natural biological control of phototrophic biofilms on the speleothems of Nerja Cave, Malaga, Spain. The formation of plaques or spots where the phototrophic microorganisms disappeared can be assumed on the basis of processes of predation of bacteria, amoebas and some other organisms on the phototrophic biofilms. This study aims at investigating the potentialities of the biological control of phototrophic biofilms in caves, but the originality of these data should be confirmed in future studies with a larger number of biofilm samples in different ecological scenarios.Peer reviewe

    Microbiology of the stalactites from Grotta dei Cervi, Porto Badisco, Italy

    Get PDF
    The active stalactites from Grotta dei Cervi, Porto Badisco, southeastern Italy, were sampled to investigate the microbial communities present in these speleothems. Sampling was carried out in a transect about 150 m long in the central gallery, where numerous Gram-positive bacteria were isolated. Actinomycetes of the genus Streptomyces were the most abundant, followed by members of the genus Bacillus. Further isolates were assigned to the genera Amycolatopsis, Arthrobacter, Agromyces, Micrococcus, Nocardiopsis and Rhodococcus of the order Actinomycetales. The ability of actinomycetes to colonize subterranean environments is discussed

    Colored Microbial Coatings in Show Caves from the Galapagos Islands (Ecuador): First Microbiological Approach

    Get PDF
    The Galapagos Islands (Ecuador) have a unique ecosystem on Earth due to their outstanding biodiversity and geological features. This also extends to their subterranean heritage, such as volcanic caves, with plenty of secondary mineral deposits, including coralloid-type speleothems and moonmilk deposits. In this study, the bacterial communities associated with speleothems from two lava tubes of Santa Cruz Island were investigated. Field emission scanning electron microscopy (FESEM) was carried out for the morphological characterization and detection of microbial features associated with moonmilk and coralloid speleothems from Bellavista and Royal Palm Caves. Microbial cells, especially filamentous bacteria in close association with extracellular polymeric substances (EPS), were abundant in both types of speleothems. Furthermore, reticulated filaments and Actinobacteria-like cells were observed by FESEM. The analysis of 16S rDNA revealed the presence of different bacterial phylotypes, many of them associated with the carbon, nitrogen, iron and sulfur cycles, and some others with pollutants. This study gives insights into subsurface microbial diversity of the Galapagos Islands and further shows the interest of the conservation of these subterranean geoheritage sites used as show caves

    Colored Microbial Coatings in Show Caves from the Galapagos Islands (Ecuador): First Microbiological Approach

    Get PDF
    The Galapagos Islands (Ecuador) have a unique ecosystem on Earth due to their outstanding biodiversity and geological features. This also extends to their subterranean heritage, such as volcanic caves, with plenty of secondary mineral deposits, including coralloid-type speleothems and moonmilk deposits. In this study, the bacterial communities associated with speleothems from two lava tubes of Santa Cruz Island were investigated. Field emission scanning electron microscopy (FESEM) was carried out for the morphological characterization and detection of microbial features associated with moonmilk and coralloid speleothems from Bellavista and Royal Palm Caves. Microbial cells, especially filamentous bacteria in close association with extracellular polymeric substances (EPS), were abundant in both types of speleothems. Furthermore, reticulated filaments and Actinobacteria-like cells were observed by FESEM. The analysis of 16S rDNA revealed the presence of different bacterial phylotypes, many of them associated with the carbon, nitrogen, iron and sulfur cycles, and some others with pollutants. This study gives insights into subsurface microbial diversity of the Galapagos Islands and further shows the interest of the conservation of these subterranean geoheritage sites used as show caves

    Special Issue on Interdisciplinary Researches for Cultural Heritage Conservation

    No full text
    UNESCO defines cultural heritage as “the legacy of physical artefacts and intangible attributes of a group or society that are inherited from past generations, maintained in the present and bestowed for the benefit of future generations” [...
    corecore